

Dimensionamento de Vigas de Alta Resistência Incorporando o Coeficiente de Fragilidade

Paula Meirelles Bolelli, M.Sc.¹, Tiago Garcia Carmona, M.Sc.²

¹ Pedreira Ônix / paula@pedreiraonix.eng.br

² Universidade Presbiteriana Mackenzie / Carmona Soluções em Engenharia / tiago@carmona.eng.br

Resumo

Este artigo tem como objetivo a análise de vigas de concreto armado de alta resistência, com base nas versões de 2014 e 2023 da ABNT NBR 6118, explorando o impacto do coeficiente de fragilidade introduzido na atualização mais recente. A pesquisa foca em vigas retangulares submetidas à flexão simples, com resistências características superiores a 40 MPa, analisando como o aumento da resistência do concreto influencia a fragilidade do material. A metodologia adotada envolve simulações comparativas entre as duas versões da norma, avaliando o efeito do coeficiente de fragilidade nas áreas de aço obtidas, conforme os critérios e equações de dimensionamento normativo. A partir das análises obtidas, observou-se que a incorporação do coeficiente de fragilidade aumenta ligeiramente a área de armadura necessária, além de afetar a profundidade da linha neutra, indicando uma estrutura mais frágil. Esses resultados reforçam a importância de adotar práticas de dimensionamento mais seguras, alinhadas às novas exigências normativas. Além disso, quanto observa-se que maior a resistência característica do concreto, mais expressivo é o aumento da armadura necessária, refletindo uma maior fragilidade estrutural. Assim, esse estudo visa contribuir para o entendimento das mudanças normativas e suas implicações práticas na engenharia de estruturas.

Palavras-chave

concreto de alta resistência; coeficiente de fragilidade; armadura simples

Introdução

A indústria da construção civil enfrenta o desafio de atender às crescentes demandas por estruturas mais complexas e eficientes. Concretos de alta resistência, cada vez mais utilizados em projetos modernos, oferecem vantagens significativas, mas também apresentam uma questão crítica: quanto maior a resistência, maior a fragilidade do material. Esse comportamento pode representar um risco à segurança das estruturas, exigindo ajustes nos processos de dimensionamento e controle rigoroso.

O concreto é o segundo material mais consumido no mundo, superado apenas pela água. Amplamente utilizado na construção civil, permite a construção de estruturas complexas, tanto em concreto armado quanto protendido (Silva *et al.*, 2022). O avanço das técnicas de cálculo estrutural e o aprofundamento do conhecimento sobre as propriedades do concreto e do aço são essenciais para atender às crescentes demandas técnicas e econômicas. Muitas vezes, concretos convencionais não conseguem suprir essas exigências, levando ao desenvolvimento de compósitos mais eficientes, como os concretos de alta resistência.

Nesse contexto, o concreto de alta resistência surge como uma solução capaz de oferecer não apenas maior resistência à compressão, mas também outras vantagens significativas. Entre essas vantagens, Pinto, Silva e Panizzon (2021) destacam sua maior durabilidade e resistência a fatores como abrasão, impacto e corrosão química. Essas propriedades superiores tornam o concreto de alta resistência uma escolha ideal para projetos que exigem alto desempenho e maior segurança estrutural. O uso de concreto de alta resistência cresce mundialmente, com finalidade estrutural, sendo empregado em edifícios, barragens, indústrias, recuperações estruturais, peças pré-moldadas, entre outras (Barbosa *et al.*, 2013).

Menos poroso e mais denso que o concreto convencional, o concreto de alta resistência se destaca pela sua capacidade de acelerar o processo construtivo. Esse material é vantajoso em obras que demandam rapidez, como na indústria de pré-moldados, mas também em estruturas convencionais ou protendidas. Algumas obras

precisam de concreto de alta resistência inicial para acelerar o processo construtivo, permitindo a desforma e o avanço das etapas seguintes mais rapidamente. Isso ocorre principalmente em projetos com prazos curtos ou com demandas especiais, onde a resistência precoce do concreto garante maior eficiência. Ainda, sua aplicação pode ser encontrada em situações que exigem suporte imediato de cargas elevadas ou resistência a condições severas de desgaste ou compressão.

O desenvolvimento de concretos de alta resistência, viabilizado por avanços tecnológicos, possibilitou a construção de estruturas mais esbeltas e duráveis, com foco em maior eficiência e economia. Para acompanhar essas inovações, a norma brasileira ABNT NBR 6118 (Associação Brasileira de Normas Técnicas, 2023) foi atualizada, introduzindo o coeficiente de fragilidade para concretos com resistência superior a 40 MPa, inspirado no Eurocode 2 EN 1992-1-1 (CEN, 2023), conforme descrito no subitem 5.1.6 "Design assumptions".

Embora a atualização da norma seja um passo importante, ainda há uma lacuna de estudos práticos que abordem de forma objetiva o impacto do coeficiente de fragilidade no dimensionamento de vigas de concreto de alta resistência. A versão anterior, de 2014, da norma ABNT NBR 6118 (Associação Brasileira de Normas Técnicas, 2014), não contemplava esse coeficiente, que considera a crescente fragilidade do concreto com o aumento da resistência (Santos, 2024). Compreender os efeitos do coeficiente de fragilidade é fundamental para que os profissionais adotem práticas de dimensionamento mais seguras e adequadas às novas exigências normativas.

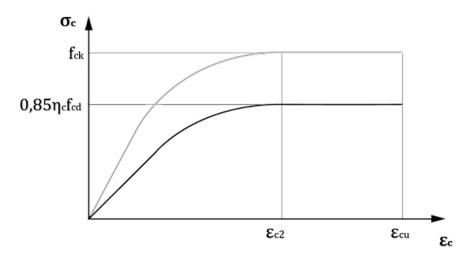
Segundo Helene, Isaia e Tutikian (2011), a produção de concretos avançados envolve a incorporação de aditivos, fibras, pigmentos e adições minerais. O uso de técnicas avançadas de cura, como altas temperaturas e pressões, também é essencial para melhorar o desempenho desse material. Esses aprimoramentos tornam possível o desenvolvimento de estruturas mais eficientes, duráveis e seguras. Estudos recentes têm explorado o uso de concretos de ultra-alto desempenho (UHPC) para melhorar o desempenho estrutural e a durabilidade, além de contribuir para a sustentabilidade na construção civil devido à sua alta resistência e baixa permeabilidade, apesar de seu elevado custo e conteúdo de cimento (Fan *et al.*, 2024).

O uso de concretos de alta resistência pode viabilizar a diminuição das seções estruturais, levando a construções mais leves e, em muitos casos, mais econômicas. No entanto, é fundamental que essa redução não comprometa a segurança e a durabilidade da estrutura ao longo de sua vida útil. Para garantir o máximo benefício desse material, é indispensável um dimensionamento correto, aliado às inovações tecnológicas e à aplicação das normas atualizadas.

A Norma Brasileira ABNT NBR 8953 — Concretos para fins estruturais (Associação Brasileira de Normas Técnicas, 2015) classifica os concretos estruturais em dois grupos: Grupo I, que abrange resistências entre 20 MPa e 50 MPa, e Grupo II, com resistências de 55 MPa a 100 MPa, ambos com incrementos de 5 MPa. A ABNT NBR 6118 (Associação Brasileira de Normas Técnicas, 2014) passou a englobar os concretos do Grupo II na versão de 2014, porém, limitando até 90 MPa. Até então, a referida norma só considerava para os cálculos concretos com até 50 MPa. Com isso, nota-se a necessidade de se revisar constantemente as normas à medida que novos materiais e tecnologias são introduzidos na prática da construção civil.

O concreto de alta resistência, com sua microestrutura densa resultante da baixa relação água/cimento, adições minerais e alto consumo de cimento, se destaca por ser menos permeável e mais resistente. No entanto, essas características vantajosas também aumentam sua suscetibilidade à fissuração frágil, quando comparado ao concreto convencional (Pinto, Silva e Panizzon, 2021).

O uso eficiente de concretos de alta resistência, portanto, requer um equilíbrio entre suas propriedades superiores e as exigências de segurança. Apenas com um entendimento profundo de suas características e com a aplicação de metodologias adequadas é possível garantir o desempenho desejado nas estruturas. A inovação contínua no campo da engenharia de materiais é essencial para que esses concretos avancem ainda mais na construção civil.


Metodologia

O diagrama de tensão-deformação no concreto é uma ferramenta importante para compreender o comportamento mecânico desse material sob diferentes níveis de esforço. Ele descreve a relação entre a tensão aplicada e a deformação resultante, permitindo visualizar as fases de resposta do concreto, desde o estágio elástico até o colapso. Esse diagrama revela aspectos importantes, como a capacidade do concreto de suportar

cargas, sua ductilidade e a forma como ele se deforma antes de atingir a ruptura, informações essenciais para o dimensionamento e a segurança das estruturas.

A Figura 1 refere-se ao diagrama de tensão-deformação idealizado para o concreto, utilizado no dimensionamento de seções estruturais no estado-limite último. Nesse diagrama, nota-se o comportamento linear até o limite de proporcionalidade, seguido pela plastificação do material.

Figura 1 – Diagrama tensão-deformação idealizado do concreto armado conforme a ABNT NBR 6118 (Associação Brasileira de Normas Técnicas, 2023)

No trecho linear, pode-se admitir que:

$$\sigma_c = 0.85 \cdot \eta_c \cdot f_{cd} \cdot \left[1 - \left(1 - \frac{\varepsilon_c}{\varepsilon_{c2}} \right)^n \right] \tag{1}$$

O parâmetro η_c na Equação (1) se refere ao coeficiente que considera a fragilidade. A ABNT NBR 6118 (Associação Brasileira de Normas Técnicas, 2023) define que:

• para concretos com $f_{ck} \le 40$ MPa:

$$\eta_c = 1.0 \tag{2}$$

• para concretos com $f_{ck} > 40$ MPa:

$$\eta_c = (40/f_{ck})^{1/3} \tag{3}$$

A variável n também tem seu valor em função da resistência característica do concreto:

• para concretos com $f_{ck} \le 50$ MPa:

$$n = 2.0 \tag{4}$$

• para concretos com $f_{ck} > 40$ MPa:

$$\eta_c = 1.4 + 23.4 \cdot \left[\frac{(90 - f_{ck})}{100} \right]^4$$
(5)

Por fim, a deformação específica do concreto ε_{c2} é definida também em função da classe do concreto:

• para concretos com $f_{ck} \le 50$ MPa:

$$\varepsilon_{c2} = 2,0\%_0 \tag{6}$$

• para concretos com $50 < f_{ck} \le 90 \text{ MPa}$:

$$\varepsilon_{c2} = 2.6\%_0 + 35\%_0 \cdot \left[\frac{(90 - f_{ck})}{100} \right]^4$$
 (7)

A distribuição de tensões no concreto idealizado tem a forma conhecida como parábola retângulo. Admite-se, porém, a simplificação desse modelo. O uso do diagrama retangular torna as equações de dimensionamento significativamente mais simples, e os resultados obtidos são bastante próximos daqueles gerados pelo diagrama parábola-retângulo (Araújo, 2023).

Concretos de maior resistência tendem a apresentar falhas mais bruscas e menos deformação plástica antes da ruptura, e, por isso, tem limite menor. Isso reflete a necessidade de garantir um comportamento mais seguro e dúctil nas estruturas de concreto de alta resistência, reduzindo o risco de colapso frágil.

Para compensar essa fragilidade, as normas adotam medidas que visam aumentar a ductilidade, como o uso de coeficientes específicos para concretos de alta resistência. Essas exigências normativas buscam assegurar que, mesmo em materiais mais rígidos, a estrutura possa deformar-se de forma controlada antes de atingir a ruptura, garantindo maior segurança.

Para o dimensionamento de seções retangulares, a ABNT NBR 6118 (Associação Brasileira de Normas Técnicas, 2023) limita a relação entre a profundidade da linha neutra x e a altura útil da seção d de acordo com a resistência característica do concreto (f_{ck}) . Esse limite determina a máxima profundidade permitida para a linha neutra antes que a seção se torne excessivamente frágil. Assim, é definido no item 14.6.4.3 da norma em questão que:

• para concretos com $f_{ck} \le 50$ MPa:

$$x/d = 0.45 \tag{8}$$

• para concretos com $f_{ck} > 50$ MPa:

$$x/d = 0.35 \tag{9}$$

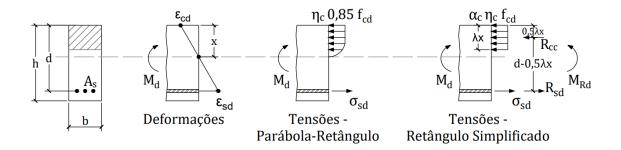
Essa limitação ocorre porque concretos de alta resistência apresentam menor ductilidade, exigindo um critério mais restritivo para evitar colapsos frágeis.

Segundo a ABNT NBR 6118 (Associação Brasileira de Normas Técnicas, 2023), em seções retangulares, pode ser considerada uma profundidade equivalente dada por:

$$y = \lambda \cdot x \tag{10}$$

onde o valor do parâmetro λ varia na seguinte faixa:

• para concretos com $f_{ck} \le 50$ MPa:


$$\lambda = 0.8 \tag{11}$$

• para concretos com $f_{ck} > 50$ MPa:

$$\lambda = 0.8 - (f_{ck} - 50)/400 \tag{12}$$

Na Figura 2 seguir, podem ser observada a simplificação do modelo de acordo com os parâmetros normativos.

Figura 2 - Distribuições das tensões no concreto armado para o caso de armadura simples

A metodologia adotada baseia-se em formulações propostas por Dalfré *et al.* (2022), que, apesar de anterior à revisão da norma, já previam a incorporação do coeficiente de fragilidade. As equações de equilíbrio estão descritas nas Equações (13) e (14):

$$M_d = \alpha_c \cdot \eta_c \cdot \lambda \cdot f_{cd} \cdot b \cdot x \cdot (d - 0.5 \cdot \lambda \cdot x) \tag{13}$$

$$M_d = A_s \cdot \sigma_{sd} \cdot (d - 0.5 \cdot \lambda \cdot x) \tag{14}$$

A partir do equacionamento anterior, foram realizadas simulações de uma viga hipotética com características geométricas específicas para analisar a influência do coeficiente de fragilidade e determinar a área de aço A_s necessária. A viga possui largura (b) de 1,60 m e altura útil (d) de 2,00 m em todas as situações estudadas. Foram adotados valores de resistência característica do concreto (f_{ck}) de 60 MPa a 80 MPa, com incrementos de 5 MPa, e momentos fletores de cálculo (M_d) variando de 30.000 kN·m a 45.000 kN·m, com variação de 1.000 kN·m por simulação.

Resultados

Os resultados obtidos, conforme descrito na metodologia, estão apresentados nas Tabelas 1 a 5, considerando valores de f_{ck} entre 60 MPa e 80 MPa, com variação de 5 MPa entre cada caso. Neste trabalho, o escopo foi delimitado à análise de casos com armadura simples, nos domínios de deformação D2 e D3, permitindo uma investigação mais direcionada dos efeitos do coeficiente de fragilidade nessas condições. Os resultados que consideram o coeficiente de fragilidade correspondem à ABNT NBR 6118 de 2023, enquanto aqueles sem o coeficiente referem-se à versão de 2014.

Tabela 1 – Resultados da simulação da viga para $f_{ck} = 60 \text{ MPa}$

M (kN.m)	Com coeficiente de fragilidade		Sem coeficiente de fragilidade	
	x/d	A_s (cm ²)	x/d	A_s (cm ²)
30.000	0,219	376,93	0,189	372,19
31.000	0,227	390,82	0,195	385,70
32.000	0,235	404,83	0,202	399,30
33.000	0,243	418,94	0,209	412,98
34.000	0,251	433,16	0,216	426,75
35.000	0,260	447,50	0,223	440,61
36.000	0,268	461,95	0,230	454,56
37.000	0,276	476,53	0,237	468,61
38.000	0,285	491,22	0,245	482,75
39.000	0,293	506,04	0,252	496,99
40.000	0,302	520,99	0,259	511,32
41.000	0,311	536,08	0,266	525,76
42.000	0,320	551,30	0,274	540,31
43.000	0,329	566,65	0,281	554,96
44.000	0,338	582,16	0,289	569,72
45.000	0,347	597,81	0,296	584,58

Tabela 2 – Resultados da simulação da viga para $\boldsymbol{f}_{ck} = 65~\mathrm{MPa}$

<i>M</i> (kN.m)	Com coeficiente de fragilidade		Sem coeficiente de fragilidade	
	x/d	A_s (cm ²)	x/d	A_s (cm ²)
30.000	0,216	375,92	0,181	370,55
31.000	0,224	389,73	0,187	383,93
32.000	0,232	403,65	0,194	397,39
33.000	0,240	417,67	0,201	410,92
34.000	0,248	431,79	0,207	424,54
35.000	0,256	446,03	0,214	438,24
36000	0,264	460,37	0,221	452,03
37.000	0,272	474,83	0,227	465,89
38.000	0,281	489,40	0,234	479,85
39000	0,289	504,10	0,241	493,90
40.000	0,298	518,91	0,248	508,03
41.000	0,306	533,86	0,255	522,26
42.000	0,315	548,93	0,262	536,58
43.000	0,324	564,13	0,269	551,00
44000	0,333	579,47	0,276	565,52
45.000	0,341	594,94	0,283	580,13

Tabela 3 – Resultados da simulação da viga para $f_{ck}=70~\mathrm{MPa}$

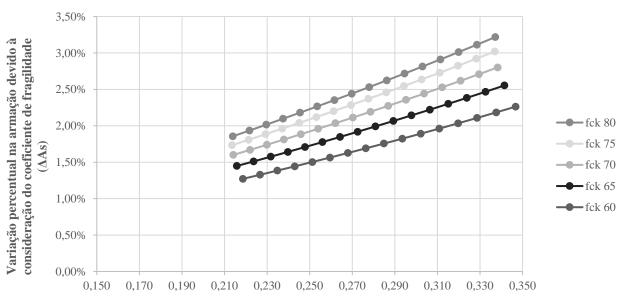
M (kN.m)	Com coeficiente de fragilidade		Sem coeficiente de fragilidade	
	x/d	A_s (cm ²)	x/d	A_s (cm ²)
30.000	0,214	375,12	0,175	369,21
31.000	0,222	388,86	0,181	382,48
32.000	0,230	402,71	0,187	395,83
33.000	0,238	416,66	0,194	409,25
34.000	0,246	430,70	0,200	422,74
35.000	0,254	444,86	0,207	436,31
36.000	0,262	459,11	0,213	449,96
37.000	0,270	473,48	0,220	463,69
38.000	0,279	487,96	0,226	477,49
39.000	0,287	502,56	0,233	491,38
40.000	0,295	517,27	0,239	505,36
41.000	0,304	532,10	0,246	519,42
42.000	0,312	547,05	0,253	533,56
43.000	0,321	562,13	0,259	547,80
44.000	0,330	577,34	0,266	562,12
45.000	0,338	592,68	0,273	576,54

Tabela 4 – Resultados da simulação da viga para $f_{ck}=75~\mathrm{MPa}$

<i>M</i> (kN.m)	Com coeficiente de fragilidade		Sem coeficiente de fragilidade	
	x/d	A_s (cm ²)	x/d	A_s (cm ²)
30.000	0,214	374,49	0,170	368,10
31.000	0,221	388,18	0,176	381,29
32.000	0,229	401,97	0,182	394,54
33.000	0,237	415,86	0,189	407,86
34.000	0,245	429,85	0,195	421,26
35.000	0,253	443,94	0,201	434,72
36.000	0,261	458,13	0,207	448,26
37.000	0,269	472,42	0,214	461,87
38.000	0,278	486,83	0,220	475,56
39.000	0,286	501,35	0,226	489,33
40.000	0,294	515,97	0,233	503,17
41.000	0,303	530,72	0,239	517,09
42.000	0,311	545,58	0,246	531,09
43.000	0,320	560,57	0,252	545,18
44.000	0,328	575,68	0,259	559,34
45.000	0,337	590,91	0,265	573,60

Tabela 5 – Resultados da simulação da viga para $f_{ck}=80~\mathrm{MPa}$

<i>M</i> (kN.m)	Com coeficiente de fragilidade		Sem coeficiente de fragilidade	
	x/d	A_s (cm ²)	x/d	A_s (cm ²)
30.000	0,214	374,00	0,167	367,19
31.000	0,222	387,65	0,173	380,30
32.000	0,230	401,40	0,179	393,48
33.000	0,237	415,25	0,185	406,72
34.000	0,245	429,19	0,191	420,03
35.000	0,253	443,23	0,197	433,41
36.000	0,262	457,37	0,203	446,86
37.000	0,270	471,61	0,209	460,38
38.000	0,278	485,96	0,215	473,96
39.000	0,286	500,42	0,221	487,63
40.000	0,295	514,98	0,228	501,36
41.000	0,303	529,66	0,234	515,17
42.000	0,311	544,46	0,240	529,06
43.000	0,320	559,37	0,246	543,02
44.000	0,329	574,40	0,253	557,06
45.000	0,337	589,56	0,259	571,18


Observa-se que o coeficiente de fragilidade impacta diretamente a taxa de armadura necessária para vigas de concreto de alta resistência. Comparando os valores de A_s (área de armadura) para os mesmos momentos fletores, verifica-se que a inclusão do coeficiente eleva os valores de armadura exigidos em todos os casos analisados.

Os dados apontam que o impacto do coeficiente de fragilidade cresce de forma progressiva conforme a resistência característica do concreto aumenta. Para $f_{ck} = 60$ MPa, a diferença entre os valores de armadura com e sem o coeficiente ainda é relativamente pequena. No entanto, para $f_{ck} = 80$ MPa, a discrepância tornase considerável, evidenciando a importância do ajuste normativo para concretos de maior resistência.

Além do aumento na área de aço, os resultados demonstram que a profundidade relativa da linha neutra (x/d) também é maior nas vigas dimensionadas com o coeficiente de fragilidade. Isso significa que a posição da linha neutra se desloca para valores superiores, evidenciando um comportamento estrutural mais frágil. Essa mudança é significativa, pois reflete a necessidade de ajustes no dimensionamento para garantir maior segurança e ductilidade.

O gráfico a seguir ilustrado na Figura 3 apresenta as variações percentuais entre as áreas de armadura correspondentes aos 16 valores de momento fletor, considerando diferentes valores de f_{ck} . Nota-se que, para valores mais altos de f_{ck} , a diferença entre os dimensionamentos com e sem o coeficiente de fragilidade se torna mais significativa, reforçando a influência desse fator na necessidade de maior taxa de aço.

Figura 3 - Variação Percentual da Armação em Função da Posição da Linha Neutra (x/d) com o acréscimo do coeficiente de fragilidade

Posição da linha neutra considerando o coeficiente de fragilidade (x/d)

Além disso, os dados exibem uma tendência praticamente linear no intervalo estudado, evidenciando uma relação direta e consistente entre o aumento da resistência característica do concreto e a elevação da área de armadura necessária ao se considerar o coeficiente de fragilidade. Isso reforça sua relevância e a necessidade de ajustes cuidadosos no dimensionamento estrutural conforme a resistência do concreto.

Os resultados mostram que, quanto maior a resistência do concreto, maior é a necessidade de ajustes no dimensionamento para compensar sua fragilidade. A aplicação correta do coeficiente de fragilidade garante que a estrutura se comporte de forma mais segura, prevenindo falhas inesperadas. Assim, esse coeficiente é essencial para assegurar a segurança das edificações, especialmente em projetos que exigem alto desempenho estrutural.

Conclusões

Nas vigas, onde a flexão é predominante, o concreto de alta resistência oferece vantagens como maior capacidade de carga e durabilidade. No entanto, sua maior rigidez exige um aumento na área de armadura, inclusive na taxa mínima, para garantir a ductilidade e prevenir rupturas frágeis.

A introdução do coeficiente de fragilidade pela ABNT NBR 6118 (Associação Brasileira de Normas Técnicas, 2023), com base no que foi proposto no Eurocode 2 EN 1992-1-1 (CEN, 2023), visa aprimorar o

dimensionamento estrutural, prevenindo falhas bruscas e aumentando a segurança. Esse coeficiente é especialmente relevante para concretos de alta resistência, que, apesar de sua durabilidade, apresentam maior suscetibilidade à fissuração frágil. Dessa forma, a norma ajusta os cálculos para garantir um comportamento estrutural mais confiável em concretos com f_{ck} superior a 40 MPa.

Os resultados obtidos ao longo deste estudo demonstram que a introdução do coeficiente de fragilidade na ABNT NBR 6118 (2023) tem um impacto no dimensionamento de vigas de concreto de alta resistência. A aplicação desse coeficiente resulta em um ligeiro aumento na armadura de flexão necessária para garantir um comportamento estrutural mais seguro e prevenir falhas frágeis.

Os efeitos da consideração do coeficiente de fragilidade se tornam mais expressivos à medida que a resistência característica do concreto aumenta, conforme demonstrado pelos resultados das simulações. Observou-se que a profundidade relativa da linha neutra é maior quando o coeficiente é considerado, indicando um comportamento estrutural mais frágil, como esperado. Consequentemente, há um acréscimo na área de aço necessária para garantir um desempenho mais seguro e reduzir o risco de ruptura brusca. Esses resultados ressaltam a importância de um controle mais rigoroso no projeto de estruturas que utilizam esses materiais.

Essa modificação no cálculo contribui para maior segurança e confiabilidade estrutural ao aprimorar a ductilidade, o que permite à estrutura suportar deformações mais intensas e diminui o risco de falhas abruptas. Embora o concreto de alta resistência seja notável pela sua robustez e durabilidade, seu comportamento frágil demanda soluções otimizadas para assegurar um uso mais seguro e eficaz. Nesse cenário, a continuidade das pesquisas é fundamental para o aprimoramento das normas técnicas, garantindo construções mais seguras, econômicas e sustentáveis.

Referências

- ARAÚJO, Milton. Curso de concreto armado. volume 1. 5. ed. São Paulo: Editora Dunas, 2023.
- ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. ABNT NBR 6118: projeto de estruturas de concreto: procedimento. Rio de Janeiro: ABNT, 2014.
- ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. ABNT NBR 6118: projeto de estruturas de concreto. Rio de Janeiro: ABNT, 2023.
- ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. ABNT NBR 8953: concreto para fins estruturais: classificação pela massa específica, por grupos de resistência e por consistência. Rio de Janeiro: ABNT, 2015.
- BARBOSA, M. B.; PEREIRA, A. M.; AKASAKI, J. L.; FIORITI, C. F.; FAZZAN, J. V.; TASHIMA, M. M.; BERNABEU, J. J. P.; MELGES, J. L. P.. Impact strength and abrasion resistance of high strength concrete with rice husk ash and rubber tires. Revista Ibracon de Estruturas e Materiais, [S.L.], v. 6, n. 5, p. 811-820, out. 2013. FapUNIFESP (SciELO). http://dx.doi.org/10.1590/s1983-41952013000500007.
- DALFRÉ, Glaucia Maria; PELLEGRINO NETO, Januário; PINTO, Roberto Caldas de Andrade; PEREIRA, Sebastião Salvador Real; PARSEKIAN, Guilherme Aris. Flexão Normal Simples: vigas e lajes ELU. In: KIMURA, Alio *et al.* Estruturas de Concreto Armado: volume 1. São Paulo: Oficina de Textos, 2022. B7. p. 409-531.
- EUROPEAN COMMITTEE FOR STANDARDIZATION. EN 1992-1-1: Design of concrete structures Part 1-1: General rules and rules for buildings, bridges and civil engineering structures. Brussels: European Committee for Standardization, 2023.
- FAN, Jin; SHAO, Yi; BANDELT, Matthew J.; ADAMS, Matthew P.; OSTERTAG, Claudia P.. Sustainable reinforced concrete design: the role of ultra-high performance concrete (uhpc) in life-cycle structural performance and environmental impacts. Engineering Structures, [S.L.], v. 316, p. 118585, out. 2024. Elsevier BV. http://dx.doi.org/10.1016/j.engstruct.2024.118585.
- HELENE, P.; ISAIA, G. C.; TUTIKIAN, P. F. Concreto: Ciência e Tecnologia. In: ISAIA, G. C. (org.) Concreto de alto e ultra-alto desempenho. São Paulo: IBRACON, 2011. Cap. 36.
- PINTO, Milena Fabiani; SILVA, Cristina Vitorino da; PANIZZON, Andressa. Análise do concreto de alta resistência (CAR) com adição de fibras de politereftalato de etileno (PET) submetido a altas temperaturas. Brazilian Journal Of Development, [S.L.], v. 7, n. 11, p. 106282-106298, 19 nov. 2021. South Florida Publishing LLC. http://dx.doi.org/10.34117/bjdv7n11-322.
- SANTOS, Sergio Hampshire de Carvalho. Tensão-deformação do concreto em análise. Revista Estrutura, São Paulo, v. 15, ano 7, p. 70-72, out. 2024. Disponível em: https://site.abece.com.br/revista-estrutura-edicao-15/#flipbook-df_25241/75/. Acesso em: 31 out. 2024.
- SILVA, C.M.; SANTOS Jr., G.L.; SILVA, I.K., CAVALCANTE, J.R.D. Concreto de alto desempenho: composição, produção e propriedades. Ponta Grossa PR: Atena Editora, 2022.
- SÜSSEKIND, J.C. Curso de Concreto Armado: volume 1. Rio de Janeiro: Editora Globo, 1983. 376p.