

Vigas Vagonadas - Avaliação Numérica e Experimental de Reforço em Pontes Ferroviárias.

Delvined Rocha de Souza¹, Caio Vinícius Scholgel²

¹ Rumo Logística / Engenharia de Infraestrutura de Via / delvined.souza@rumolog.com ²Rumo Logística / Engenharia de Infraestrutura de Via / caio.schlogel@rumolog.com

Resumo

Este trabalho descreve a aplicação de estrutura vagonada em uma ponte ferroviária. A ponte foi construída no município de São Carlos – SP, possui 84m de extensão em 3 vãos isoestáticos em aço sendo os vãos de aproximação vigas de almas cheias com 24 metros, e o vão central vigas vagonadas com 36 metros de extensão. A ponte foi montada sobre aterro existente acima de uma galeria de tijolos e pedras argamassadas, responsável pela travessia do córrego Monjolinho em aterro ferroviário. Devido às condições de acesso e inviabilidade de içamento, a estrutura foi posicionada por translação, sendo a proximidade do local de montagem e peso da estrutura parâmetros estressados ao longo do projeto. A solução em vigas de alma cheia, estrado inferior e o vão central reforçado com viga vagonada resultou na eficiência estrutural que tornou factível a obra. A implantação da OAE foi faseada, buscando minimizar as interferências na operação. A configuração em viga vagonada foi executada após a disponibilidade de gabarito vertical do aterro. Nesse período provisório, foram realizadas restrições de velocidade, atenuação na geometria da via, instrumentações, avaliações numéricas e controles de deformações. Após a implantação da viga armada, a operação com velocidade e geometria a pleno foi reestabelecida. A associação de modelos numéricos com instrumentação permitiu capturar os efeitos dos tirantes e montantes da viga vagonada no arranjo estrutural do vão de 36 metros. Foram observadas reduções nas tensões e deformações, bem como aumento de rigidez. Avaliações de fadiga foram realizadas com a utilização de dados experimentais e modelos em elementos finitos, sendo possível avaliar detalhes complexos em elementos soldados com ciclos de tração.

Palavras-chave

Vigas Vagonadas; Instrumentação; Fadiga; Pontes Ferroviárias.

Introdução

A ponte ferroviária sobre o córrego Monjolinho foi construída entre os anos de 2023 e 2024, com o objetivo de atender a vazão requerida pelo córrego, a qual não era suportada pela antiga galeria de drenagem. Diversos requisitos conflitantes de engenharia foram enfrentados durante o projeto e execução da estrutura, dentre os desafios destacam-se:

- Construção da ponte com a linha em operação;
- Compatibilização com a estrutura da antiga galeria sem interferência na vazão atual;
- Dispositivos da rede de drenagem e esgoto do município;
- Dificuldade de acesso para içamento de carga;
- Prazo de execução para adequação da capacidade de vazão.

Figura 1 - Imagen aérea da Ponte Ferroviária sobre o córrego Monjolinho - São Carlos -SP

Projeto Conceitual

Os principais requisitos a serem atendidos durante a fase de projeto eram:

- Ponte lastreada;
- TB-360
- Execução da Obra com linha em operação.
- Vazão do canal não inferior a 248m³/s

As condições de contorno foram extremamente desafiadoras, uma vez que existiam algumas interferências para serem contornadas, sendo o vão principal da ponte determinado pelos obstáculos presentes resultando no mínimo em 36 metros de extensão, conforme figura 2.

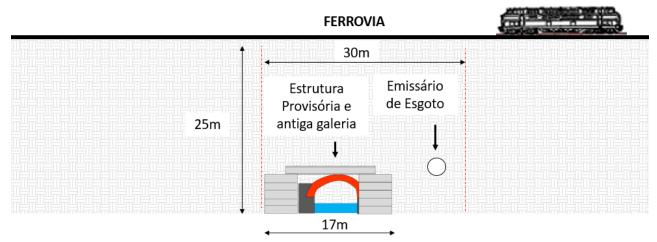


Figura 2 - Interferências existentes para projeto da nova estrutura

Com o vão central definido e devido a inviabilidade de içamento de estruturas premoldadas pela interferência com a operação ferroviária, uma ponte metálica se mostrava mais factível para o compromisso a ser cumprido. Os vãos de aproximação foram definidos após o *trade-off* realizado entre estabilização do talude e vão mínimo das extremidades, com os taludes estabilizados em solo grampeado, pode-se reduzir os vãos de aproximação para 24 metros, totalizando 84 metros de extensão de ponte em 3 vãos isoestáticos metálicos.

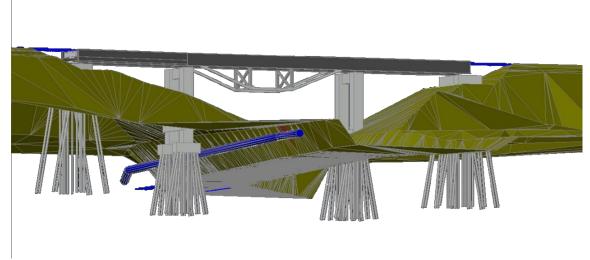


Figura 3 - Solução para interferências sobre o córrego

As vigas principais foram em alma cheia com estrado inferior fechado, configurando um tabuleiro ortotrópico para atender o requisito de ponte lastreada.

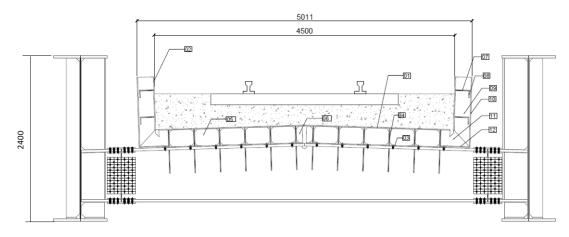


Figura 4 - Seção Transversal da ponte metálica

Com os carregamentos aplicados, o vão central de 36 metros passou a não atender os requisitos de esbeltez da alma da viga principal e de deformação. Dada as restrições impostas, não havia possibilidade de reduzir o vão central, com a dificuldade de içamento de peças, não era possível obter outras configurações de viga com maior altura. Outra restrição observada foi a matéria prima disponível para execução dentro do prazo emergêncial. Devido a estes cenáriosfoi avaliado um reforço no vão central.

O refoço precisava ter alta eficiência estrutural, minimizando o peso próprio adicionado na estrutura. Dessa forma, foram estudadas configurações em vigas armadas, que consistem no implemento de elementos treliçados com intuíto de aumentar a rigidez global da viga principal, reduzindo por sua vez as deformações totais e permitindo atender o critério de esbeltez não cumpridos anteriormente.

Pelo fato de a estrutura ser montada em cima do aterro ao lado da linha operacional, os tirantes só poderiam ser aplicados após as frentes de escavação sob a ponte avançarem. Isso implicou em uma condição provisória da estrutura. Para atender os critérios de engenharia durante a fase provisória, a operação teve sua velocidade de circulação restringida, atenuando o impacto vertical e os eforços de força centrífuga sobre a ponte.

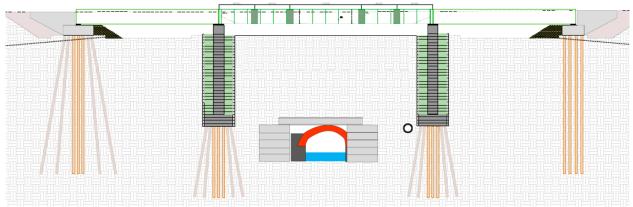


Figura 5 - Condição provisória da superestrutura

Com a disponibilidade de gabarito vertical do aterro, os elementos da viga armada foram instalados na ponte. Nessa condição, o reforço passava a absorver somente a sobrecarga ferroviária, uma vez que a estrutura na condição provisória já estava posicionada e em operação.

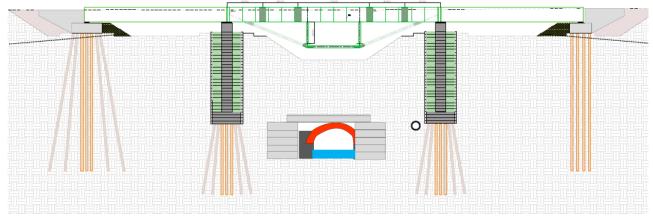


Figura 6 - Condição definitiva da superestrutura

Devido a complexidade da estrutura e das ligações realizadas, estudos aprofundados foram realizados para verificar a condição de trabalho da estrutura na condição provisória e definitiva. Foram realizadas instrumentações e simulações numéricas pelo método dos elementos finitos.

Avaliações Numéricas

Foi realizada a modelagem global simplificada para capturar o comportamento estrutural, obtendo respostas lineares para geometria e material, não linearidade de contatos foram capturadas através de modelos locais.

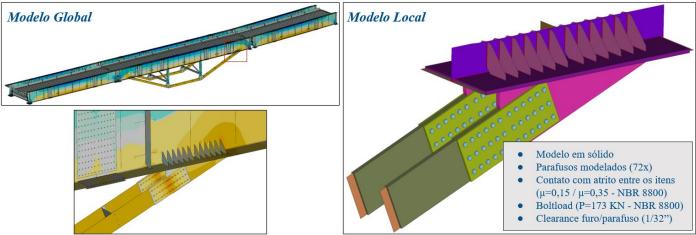


Figura 7 - Modelagem Numérica da Ponte

Após a realização da modelagem numérica, o plano de trabalho seguiu conforme ilustrado na figura 8.

Figura 8 - Plano de trabalho

Instrumentação condição provisória

Os sinais observados apresentaram uma boa correlação com o modelo numérico elaborado, demonstrando que o FEA foi capaz de reproduzir os principais picos, conforme demosntrado na figura 9.

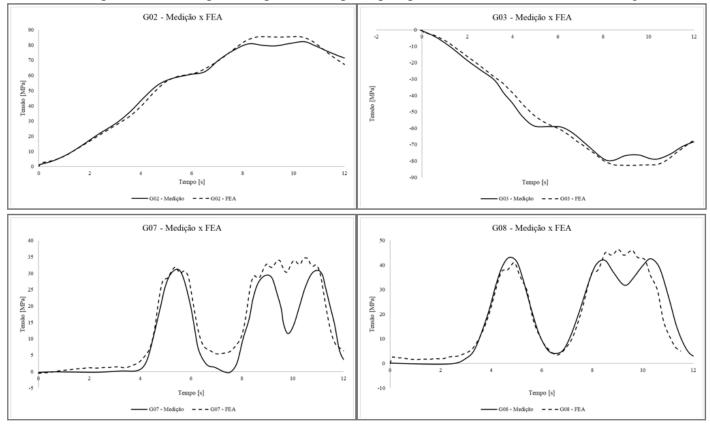


Figura 9 Comparação Instrumentação x Modelagem numérica

Instrumentação condição definitiva

Quando instrumentada na condição definitiva, a análise das acelerações permitiu identificar uma mudança no primeiro modo de ressonância do acelerômetro posicionado no meio do vão de 36 metros, o que confirma a hipótese de aumento de rigidez pela aplicação dos tirantes na viga principal, conforme observado na figura 10.

Condição	Carga	Freq. (A01_Z) [Hz]	Freq. (A02_X) [Hz]	Freq. (A02_Y) [Hz]	Freq. (A02_Z) [Hz]	Freq. (A03_X) [Hz]	Freq. (A03_Y) [Hz]
		1° Pico	1º Pico	1º Pico	1° Pico	1º Pico	1º Pico
Provisória	Vazio	5,3	4,7	3,0	3,0	4,8	3,0
	Carregado	3,8	4,8	2,8	2,3	4,7	2,8
Definitiva	Vazio	4,6	5,0	2,4	4,8	5,0	2,4
	Carregado	3,8	3,8	2,4	3,6	3,8	2,6

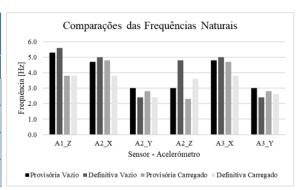


Figura 10 - Comparação das acelerações entre campanhas

Os extensômetros identificaram redução na ordem de 75% nas leituras de tensão nos canais 1, 2, 3 e 4, posicionados também na viga principal. Dessa forma, foi constatado que parte dos carregamentos passaram a ser suportados pelos tirantes, conforme exposto na figura 10.

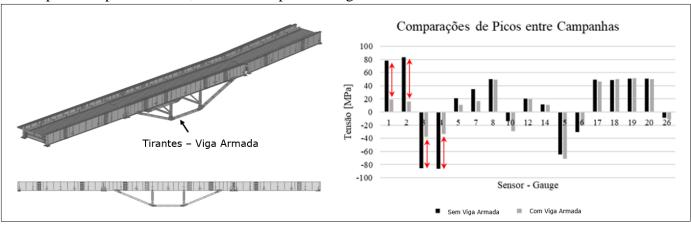


Figura 11 - Comparação dos extensômetros entra campanhas

Conclusões

Com base nos resultados expostos para os dados de vibração e tensão entre a condição provisória e definitiva, pode-se concluir que a utilização da solução em viga vagonada foi satisfatória. Os tirantes atenderam o critério de reforçar e enrijecer com pouca massa adicionada nas vigas principais, foram obtidas reduções de cerca de 75% na tensão máxima na viga principal, e reduções na ordem de 50% no primeiro modo de vibração no eixo vertical.

Através da aplicação desta solução, foi possível manter a linha de produção padronizada para as estruturas em aço da ponte, ganhando em custo e em prazo, fatores que também eram premissas para o projeto.

Por fim, vale ressaltar que através da calibração do modelo em elementos finitos, foram realizadas projeções de vida útil para a fadiga em uma série de elementos. Os resultados também foram satisfatórios para essas análises.

Referências

ADELI, H. Historic Bridges: Evaluation, Preservation and Management. CRC Press, 2019.

MAZZILLI, C.E.N; ANDRÉ, J.C.; BUCALEM, M. L.; CIFÚ, S.; Lições em Mecânica das Estruturas: Dinâmica. Blucher, 2016.

ENSHAEIAN, A.; GHAHREMANI, B.; RIZZO, P. Structural health monitoring of a lenticular truss bridge: a comprehensive study. Structural Health Monitoring. 2024;23(6):3615-3639. doi:10.1177/14759217231225925